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Unsupervised Neural Machine Translation (UNMT)

Goal: train a neural machine translation (NMT) system using only monolingual corpora

A critical component of UNMT: online back-translation (BT)

Steps of online back-translation

Given translation task X → Y , for each batch:

1 x∗ = argmaxx PY→X (x | y ; θ̃)
2 construct sample (x∗, y)

3 train the model using (x∗, y)
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Steps of online back-translation

Given translation task X → Y , for each batch:

1 x∗ = argmaxx PY→X (x | y ; θ̃)
2 construct sample (x∗, y)

3 train the model using (x∗, y)

∗ denotes translated text.
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Data Gap between Training and Inference of UNMT

Source Target

Train X ∗ Y
Inference X Y∗

Table 1: Types of training and inference data. ∗
stands for translated sentences.

The model is trained with translated
source (X ∗).

But it translates natural source (X )
sentences in inference.

The source discrepancy between training and inference hinders the translation perfor-
mance of UNMT models.

∗ denotes translated sentences.
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The Overestimated UNMT

Supervised NMT (SNMT) v.s. Unsupervised NMT (UNMT)

Two parts of the test set

target-original: sentence pairs originally
written in target language
source-original: sentence pairs originally
written in source language
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The Overestimated UNMT

Supervised NMT (SNMT) v.s. Unsupervised NMT (UNMT)

Two parts of the test set

target-original: sentence pairs originally
written in target language
source-original: sentence pairs originally
written in source language

UNMT is overestimated on the previous
benchmark.
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Style Gap

When training, the input is in translated style; while in inference, it’s in the natural style.

Inference Input PPL

Natural 242
Translated 219

Table 2: UNMT has a lower perplexity on the
translated input than on natural input.

Model
Natural In. Translated In.

BLEU ∆ BLEU ∆

SNMT 28.8 – 44.9 –

UNMT 22.5 -6.3 42.1 -2.8

Table 3: The performance of UNMT is significantly
improved after the input is switched from natural to
translated style.
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Content Gap

The content of input in training is biased towards the target language. While the input
during inference is more biased towards the source language.

Data Most Frequent Name Entities

Src-Ori Test
Deutschland, Stadt, CDU, deutschen, Zeit
SPD, USA, deutsche, China, Mittwoch

Tgt-Ori Test
Großbritannien, London, Trump, USA,
Russland, Vereinigten Staaten, Europa
Mexiko, Amerikaner, Obama

UNMT Train
Deutschland, dpa, USA, China, Obama, Stadt
Hause, Europa, Großbritannien, Russland

10 most frequent entities in the source
sentences of De-En translation

The training data of UNMT has more
entities biased towards the target
language English rather than the
expected source language German.
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Style Gap
Content Gap

Content Gap - Hallucinated Translation

Input
Die deutschen Kohlekraftwerke ... der in

Deutschland emittierten Gesamtmenge .

Ref
German coal plants , ..., two thirds of

the total amount emitted in Germany .

SNMT
..., German coal-fired power stations ...

of the total emissions in Germany .

UNMT
U.S. coal-fired power plants ... two thirds of

the total amount emitted in the U.S. ... .

Table 4: Example translation that the UNMT model outputs the hallucinated translation “U.S.”, which
is biased towards target language English.
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Online Self-training

Recap: steps of online back-translation

Given translation task X → Y , for each
batch:

1 x∗ = argmaxx PY→X (x | y ; θ̃)
2 construct sample (x∗, y)

3 train the model using (x∗, y)

Ours: steps of online self-training

Given translation task X → Y , for each
batch:

1 x∗ = argmaxx PY→X (x | y ; θ̃)
2 construct sample (x∗, y)

3 reverse the sample and get (y , x∗)

4 train the model using (x∗, y) and
(y , x∗)1

1UNMT models are typically bi-directional.
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Output Fluency

Approach
En-Fr En-De En-Ro

Avg.
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

XLM
UNMT 101 147 250 145 152 126 154
+ST 101 144 253 147 156 138 157

MASS
UNMT 100 145 256 144 143 119 151
+ST 103 146 263 142 156 133 157

We evaluate the output fluency in terms
of perplexity (PPL) with trained language
models.

Slight impact on the fluency of model
outputs, with the average PPL of XLM
and MASS models only increasing by +3
and +6, respectively.
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Natural-to-Natural Translation

Model HQ(R) HQ(all 4)

Supervised Model 35.0 27.2

XLM+UNMT 24.5 19.6
+Self-training 25.9 20.7

MASS+UNMT 24.3 19.6
+Self-training 26.0 20.8

Google provides natural-to-natural test
sets based on WMT19 En⇒De, whose
references have been paraphrased by
experts1.

We adopt the HQ(R) and HQ(all 4),
which have higher human adequacy rating
scores.

Our proposed method outperforms
baselines on both kinds of test sets.

1https://github.com/google/wmt19-paraphrased-references
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Named Entities Translation

Model Approach NE Acc.

XLM
UNMT 0.46
+Self-training 0.53

MASS
UNMT 0.44
+Self-training 0.52

Our proposed method achieves a
significant improvement in the translation
accuracy of named entities compared to
the baseline.
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Summary

We first point out the data gap between training and inference for UNMT.

Previous benchmark overestimates UNMT models → use source-original test set

We identify two critical factors: style gap and content gap.

We propose a simple and effective approach for incorporating the self-training method
into the UNMT framework to remedy the data gap.

Code, data, and trained models are available:
https://github.com/zwhe99/SelfTraining4UNMT
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