

TAL-SJTU Low-Resource Translation System
for the WMT22 Translation TaskZhiwei He¹ Xing Wang² Rui Wang¹ Shuming Shi² Zhaopeng Tu²'Shanghai Jiao Tong University'Tencent AI Lab

SUMMARY

- We participate in the general translation task on low-resource
 English Livonian.
- Model
 - M2M100 1.2B as a multilingual pre-trained model
 - Novel techniques that adapt it to the target language pairs

UNICODE INCONSISTENCY PROBLEM

- Rikters et al. (2022) has released the Liv4ever-MT model and liv4ever benchmark.
- We find that the liv4ever data have different encodings for the same character. For example, õ (00F5) and õ (006F 0303).
- After normalization and re-evaluation, the overall performance of Liv4ever-MT has been greatly improved.

Evaluation

- We point out and correct the inconsistent Unicode normalization problem of Rikters et al. (2022).
- We employ monolingual English and round-trip BLEU to evaluate the models, easing bi-text scarcity and achieving more accurate evaluation.

• Check the **Github repo** to reproduce the full results

APPROACH

- Cross-model word embedding alignment (CMEA): transfer the word embeddings of Liv4ever-MT to M2M100, enabling it to support Livonian
- 4-lingual M2M training: many-to-many translation training for all language pairs in {En, Liv, Et, Lv}, using only parallel data
- Synthetic data generation: generate synthetic bi-text for En-Liv, using Et and Lv as pivot languages
- Combine data and retrain: combine all the authentic and synthetic bi-text and retrain the model
- Fine-tune & post-process: fine-tune the model on En⇔Liv using the validation set and perform online back-translation using monolingual data. Finally, apply rule-based postprocessing to the model output.

EXPERIMENT

CMEA	Synthetic data			FINE-TUNE & Post-process			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Valid (multi-way) Round-Trip En⇒Liv Liv⇒En ^(En-original)					Test Set En-Liv	Round-Trip BLEU
Liv4ever-MT 14.3 19.3 20.5 24.4 22.3 29.3 Rikters et al.	M2M04 (T=5) +CMEA	23.0	28.4	23.4	Before fine-tuning	$\Rightarrow \Leftarrow$ 15.8 29.4	32.7
M2M04 (T=5) 21.1 27.7 25.3 29.2 26.8 36.6 + CMEA 23.0 28.4 27.2 30.7 28.5 37.6	Add sy En-original	nthetic d 17.2	ata and real 17.5	t rain 30.7	+Fine-tuning +Post-proc.	16.3 30.1 17.0 30.4	
 Pre-trained model can significantly improve translation performance. CMEA further improves the performance 	Liv-original Both	21.5 17.0	27.4 19.3	25.8 32.7	The best generalization] d often fine
	Different types (En/Liv-original) of synthetic data have different effects.				tuning and post-processing.		
through transferring the pre-trained embeddings.	Synthetic data improves round-trip BLEU but degrades the performance on parallel validation sets						