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Traditional training process of NMT

https://blog.research.google/2016/11/zero-shot-translation-with-googles.html?m=1 2



Machine v.s. Human translation

• NMT models are trained to 
perform source-to-target mapping.


• A human translator can take 
preparatory steps to ensure high-
quality translation.

How to translate the keywords?
What's the sentence's topic?
Any similar examples?

Human

Machine

Hallucination 
issue in LLM

⼤型语⾔模型 
的幻觉问题

法律硕⼠ 
的幻觉问题

⼤型语⾔模型 means “large 
language models (LLM)”.

法律硕⼠ means 

“Master of Laws (Legum 

Magister, LLM)”.

Source text

Translation

Translation
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Human-like strategies in LLM

Let’s think step by step, …
Chain-of-Thought

Let me do a reflection and think about how to 
improve my strategy, …

Reflexion

Let’s take a step back and generate a more 
generic question, …

Step-Back prompting

https://arxiv.org/abs/2201.11903

https://arxiv.org/abs/2303.11366

https://arxiv.org/abs/2310.06117 4

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2310.06117


Exploring Human-Like Translation Strategy with LLM

✓ Identify keywords and consider how to translate them


✓ Reflect on what the main topic of this text is


✓ Consider how similar sentences (demonstrations) are translated.


✓……

How to translate the keywords? 
What's the sentence's topic? 
Any similar examples?
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MAPS: Multi-Aspect Prompting and Selection
Prompting
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MAPS: Multi-Aspect Prompting and Selection
Selection (or reranking)

• LLM-SCQ: Composing a single choice question (SCQ) that asks the LLM to 
choose the best candidate on its own.


• COMET-QE: A trained quality estimation (QE) scorer that assigns a numerical 
score to each candidate. Selection is based on the highest score.


• COMET (oracle): A reference-based scorer that assigns a numerical score to 
each candidate. It can be considered as the oracle QE method, representing 
the upper bound of selection.
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Experiment setting
Comparative methods 

• Baseline: standard zero-shot translation with temperature set to 0.


• Rerank: we randomly sample three times (temperature=0.3) and add Baseline to form four 
candidates. The best candidate is selected through QE.


Base model 

• Text-davinci-003, Alpaca, Vicuna


Metrics 

• COMET and BLEURT


Testsets 

• 11 language pairs in WMT22
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Main results
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Main results
• Using the same knowledge selection 

method, MAPS outperforms Rerank 
consistently.


• This indicates that the 
improvements brought by MAPS 
stem from three types of translation-
related knowledge: 


• keywords


• topics


• relevant demonstrations.
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Main results
• MAPS exhibits a higher upper 

bound for selection.
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Human evaluation
Preference study
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MAPS is generally more preferred by 
humans.
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Human evaluation
Multidimensional quality metrics (MQM)

MAPS reduces mistranslation, awkward 
style, untranslated text, and omission errors.
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Hallucination and Ambiguity

MAPS reduces LLM’s hallucinations


MAPS helps ambiguity resolution
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Using single type of knowledge does not result in consistent improvement

Self-generated knowledge from LLM can be noisy.


Using multiple knowledge and knowledge selection are important.


Please refer to the paper for further discussion.
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Check our paper & code for more details

Paper Code
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