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Check out our paper 
for more details ☝

Why QE as a reward model?

✔ LLMs benefit from human preference 
modeled by reward models. 

✔ Today's QE models (reference-free) 
closely match human preference. 

？ Can MT model learning from QE?

Direct use: over-optimization (OO)
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• Using RAFT as an off-the-shelf algorithm. 
• Overoptimizing rewards could steer the 

model away from human preferences.

OO Cause 2: error propagation
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‣ Errors rapidly propagate in training.

OO Cause 1: imperfect reward

‣QE sometimes assigns high scores for errors.

Mitigating OO

• Detect errors during training 
• Add penalty term P to the reward if y is 

an error translation (C(x, y) = True) 
• We dub it as RAFT+
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Training curve
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Auto eval: BLEURT
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Effects of base model

• Pipeline: Base -> SFT -> RAFT+ 
• Larger model size results in a more 

significant enhancement from RAFT+. 
• RAFT+ only works when the base model 

has undergone pretraining.


