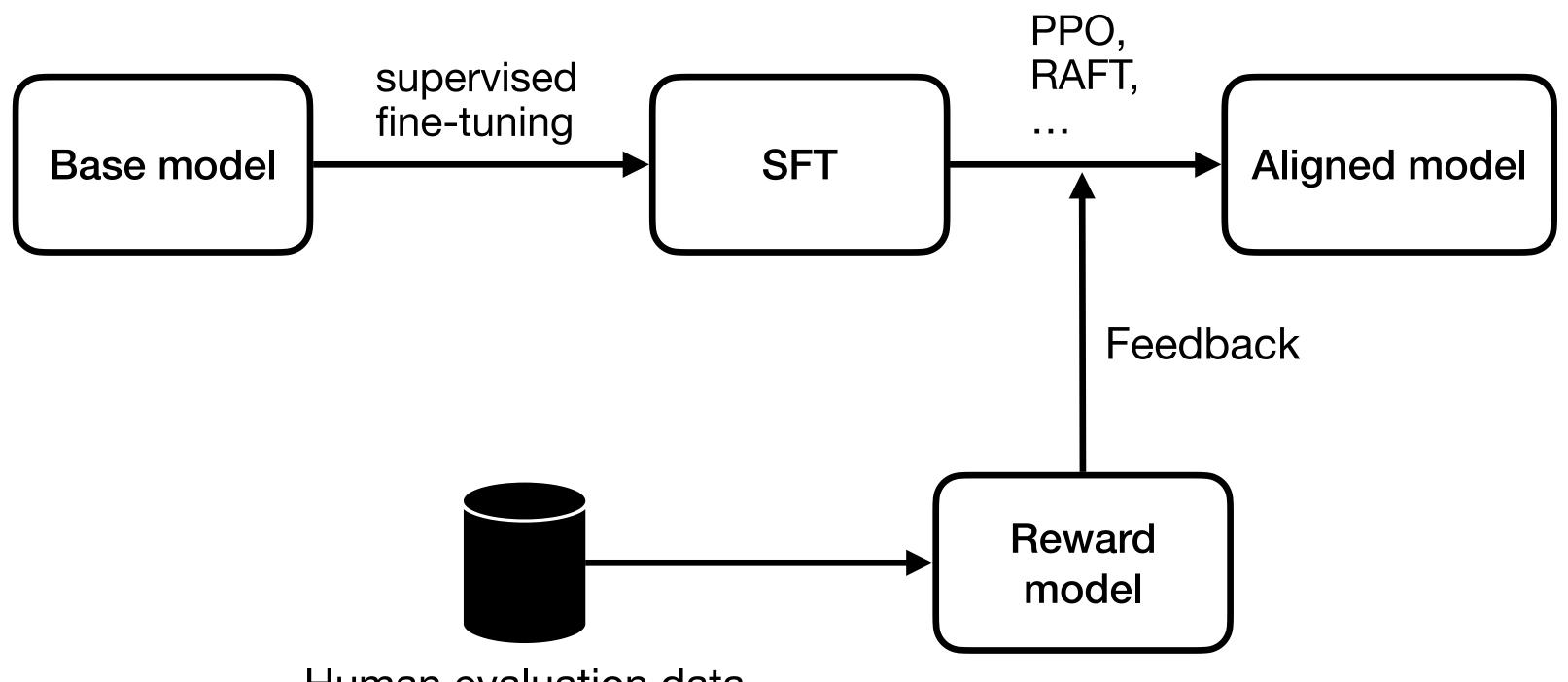
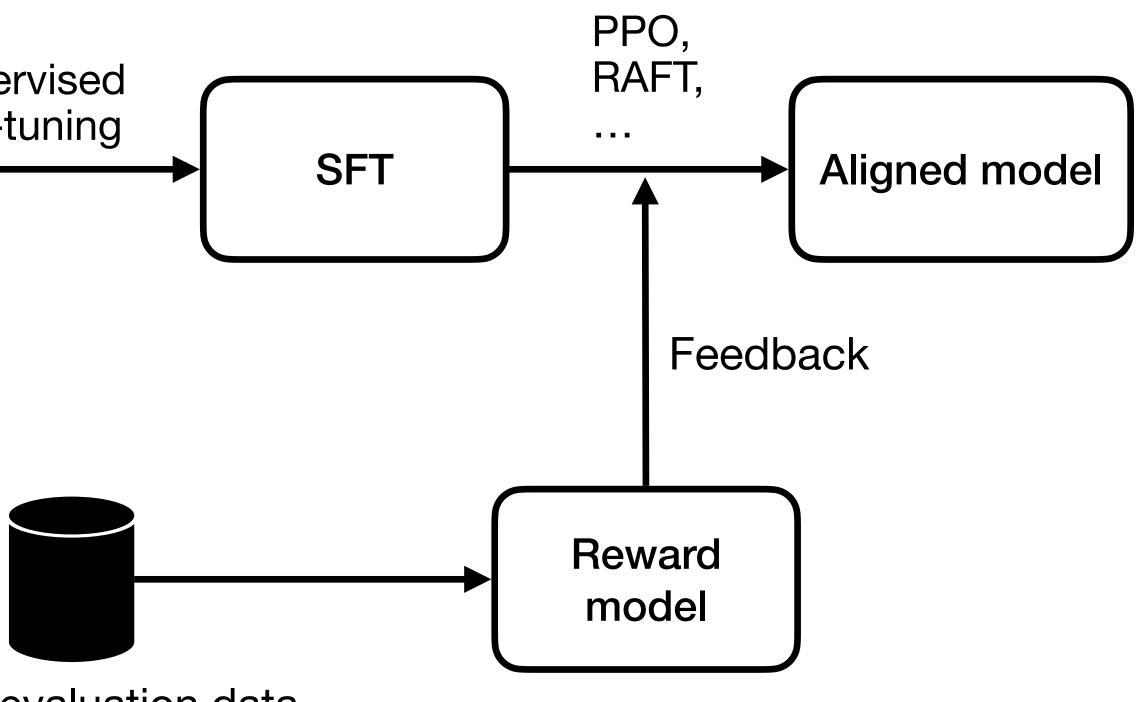
Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model

Zhiwei He

LLMs have already benefited from learning from human feedback

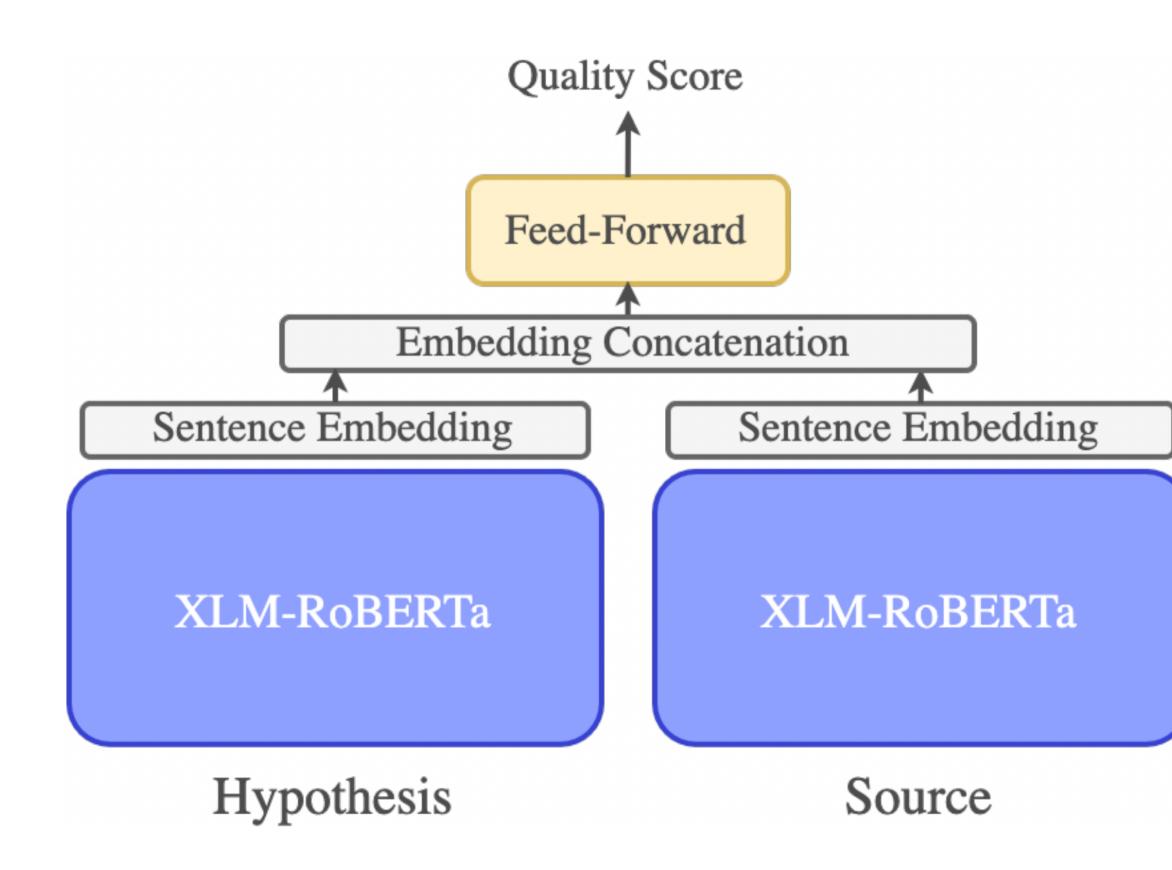




Human evaluation data

https://arxiv.org/abs/2203.02155

Can MT models learn from human feedback? Modeling human preference in MT: Quality Estimation (QE)



A sentence-level QE model can provide a numerical score to indicate the quality of the translation.

Reference-free

Can MT models learn from human feedback? Modeling human preference in MT: Quality Estimation (QE)

Metric	avg rank
METRICX XXL	1.20
Comet-22	1.32
UniTE	1.86
BLEURT-20	1.91
Comet-20	2.36
MATESE	2.57
COMETKIWI*	2.70
MS-COMET-22	2.84
UNITE-SRC*	3.03
YISI-1	3.27
COMET-QE*	3.33
MATESE-QE*	3.85
MEE4	3.87
BertScore	3.88
MS-COMET-QE-22*	4.06
CHRF	4.70
f101spBleu	4.97
HWTSC-TEACHER-SIM*	5.17
BLEU	5.31
REUSE*	6.69

Table 1: Official ranking of all primary submissions of the WMT22 Metric Task. The final score is the weighted average ranking over 201 different scenarios. Metrics with * are reference-free metrics.

Today's most advanced QE models closely match human preferences.

Can we function them as reward models in feedback training?

Feedback Training in MT **Reward rAnked FineTuning (RAFT)**

- MT model: $M = P(y|x;\theta)$
- QE-based reward model: r(x, y)
- Objective

$$\max_{\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim P(y|x;\theta)} r(x, y)$$

Algorithm 1 RAFT

- **Require:** Training set \mathcal{X} , reward function r(x, y), initial model $M_0 = P(y|x; \theta_0)$, batch size b, temperature T, the number of candidate k
 - 1: for iteration i in 0, 1, ..., N 1 do
 - $D_i \leftarrow \text{SampleBatch}(\mathcal{X}, b)$ 2:

3:
$$\mathcal{B} = \emptyset$$

for $x \in D_i$ do 4:

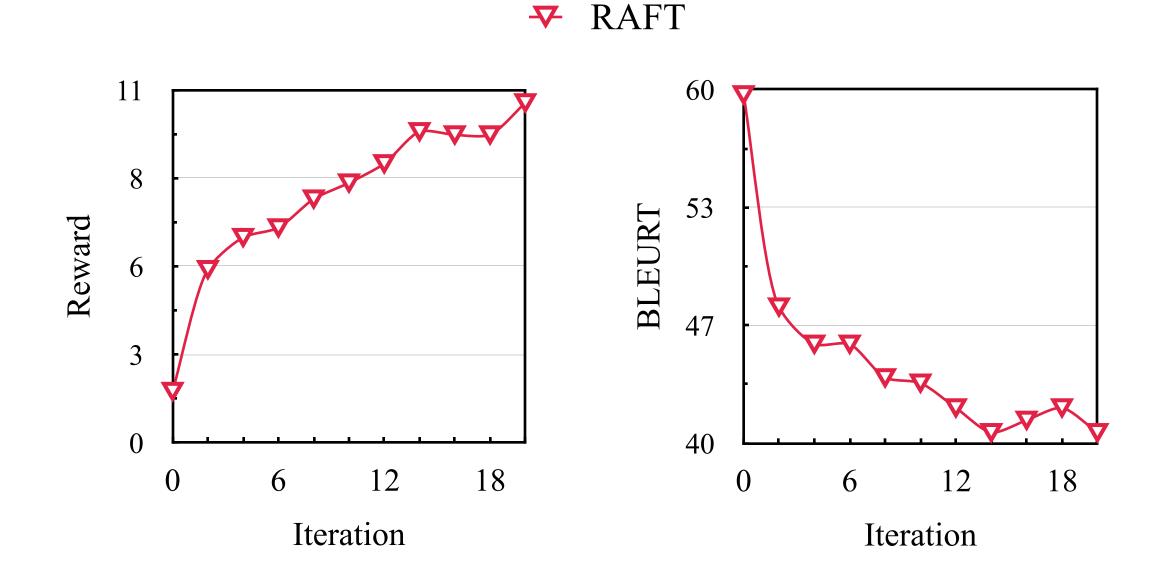
5:
$$y_1, \ldots, y_k \sim P_T(y|x;\theta_i)$$

6: $y^* = \arg \max_{y_j \in \{y_1, \dots, y_k\}} r(x, y_j)$ 7: $\mathcal{B} = \mathcal{B} \cup \{(x, y^*)\}$

7:
$$\mathcal{B} = \mathcal{B} \cup \{(x, y^*)\}$$

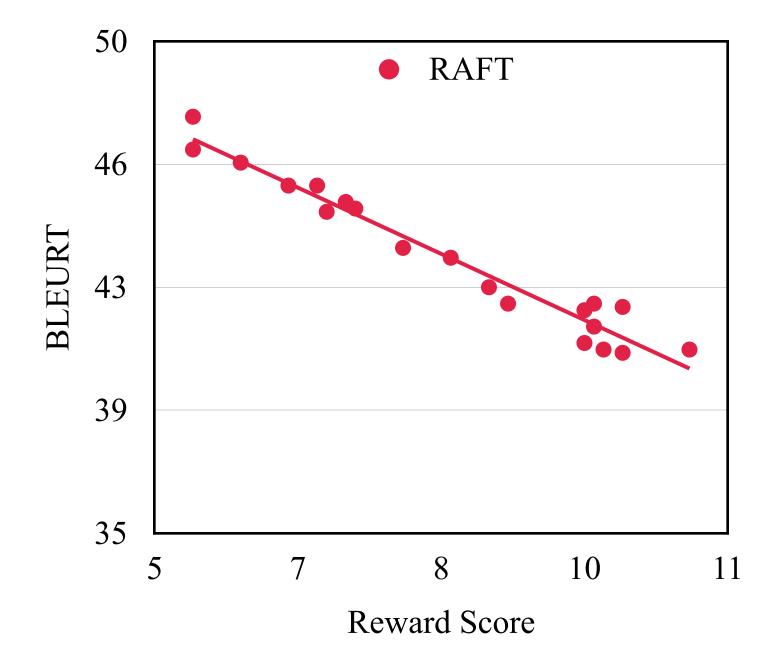
Fine-tune θ_i on \mathcal{B} to obtain $M_{i+1} =$ 8: $P(y|x;\theta_{i+1}).$

Results Not as Expected



 $\mathbf{\nabla}$

As training progresses, reward goes up, but translation quality goes down.



The two show a negative linear correlation

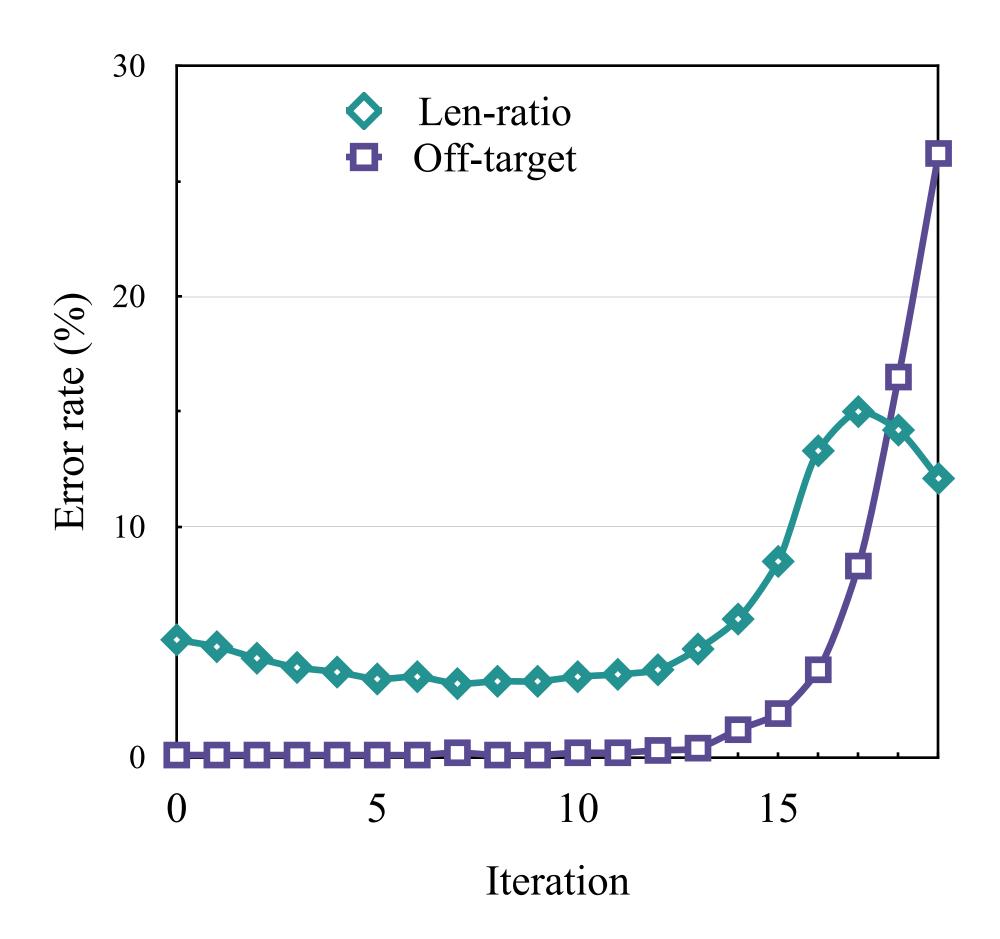
Why? Overoptimization! QE (reward) model is not perfect

Error type	Translation	Reward		
None	The rule of drinking Red	2.84		
	Label Whisky:			
Len-ratio (too long/short translation)	The rule of drinking Red Label Whisky: 1. Al- ways drink responsibly. 2. Never drink alone. 3. Avoid drinking on an empty stomach. 4. Set lim- its and stick to them. 5. Drink in moderation.	5.60		
Off-target (wrong target language)	So trinkt man Red-Label- Whisky:	4.58		

Table 1: A case of Chinese \Rightarrow English translation where the QE model (COMET-QE-DA) assigns higher scores to length-ratio and off-target errors than an error-free translation. Error spans are highlighted. QE model may assign high scores to erroneous translations in some cases.

- The two most common errors
 - Len-ratio error
 - Off-target error

Why? Overoptimization! Models can quickly capture and learn from these error patterns



Overoptimizing against an imperfect reward model can lead to systems that receive good feedback from the reward model, but not humans.

How to mitigate overoptimization? Add penalty term in reward

- \blacktriangleright C(x, y) = True if (x, y) is a len-ratio or off-target error.
- We refer to this method as RAFT+.

$r^{+}(x,y) = \begin{cases} r(x,y) - P & \text{if } C(x,y) \\ r(x,y) & \text{otherwise} \end{cases}$

RAFT+ versus RAFT RAFT+ significantly mitigates overoptimization

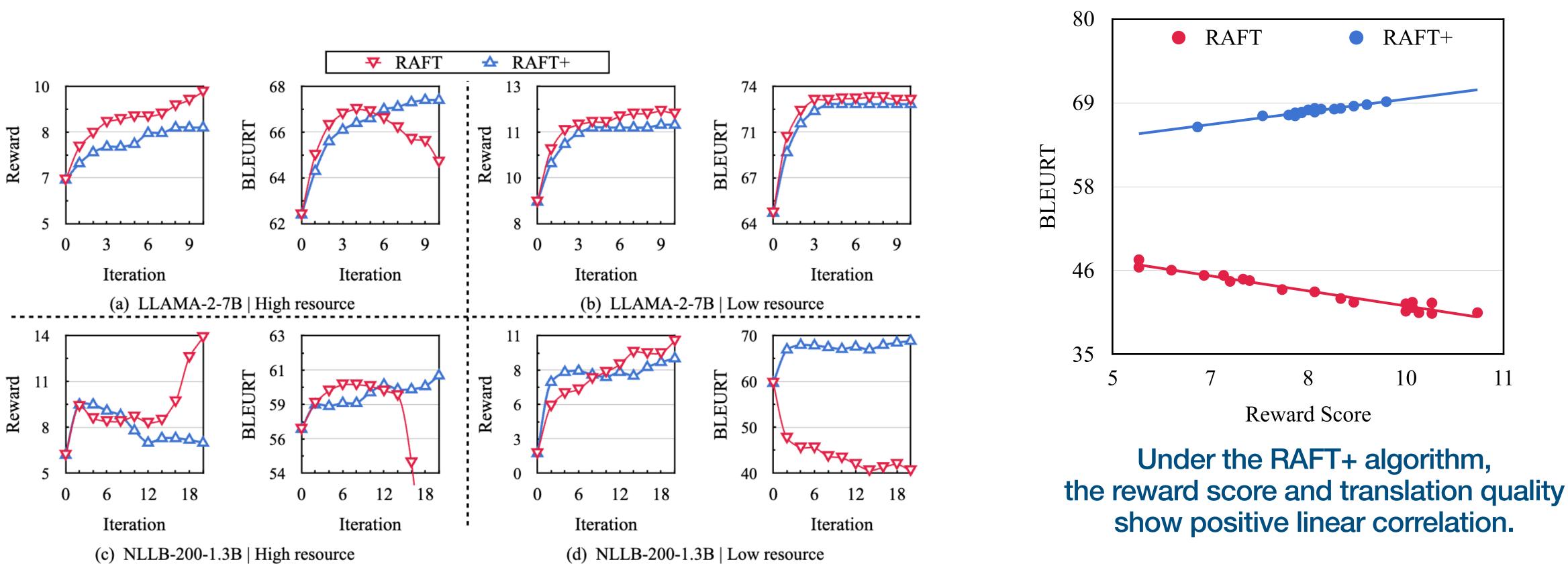


Figure 3: Training curves under various settings. The metrics are average values for all language pairs on the development set. The QE-based reward model is COMET-QE-DA.

After addressing overoptimization Feedback training is very effective, especially in low-resource languages

Method	De⇒En		En⇒De		Zh⇒En		En⇒Zh		Average		Method	En⇒Uk		Uk⇒En		Uk⇒Cs		Cs⇒Uk		Average		
method	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	Wiethou	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	
LLAMA-2-7B											LLAMA-2-7B											
SFT	82.5	70.5	80.7	68.2	76.1	62.3	84.9	69.3	81.0	67.6	SFT	79.2	64.0	76.7	66.0	70.0	53.2	71.2	51.3	74.3	58.6	
REWARD N	MODEL: C	COMET-QE	-DA								REWARD N	MODEL: C	Comet-qe	-DA								
RAFT RAFT+	83.7 83.6	72.1 72.1	82.8 84.4	71.1 73.9	78.7 79.0	65.3 66.1	85.9 85.4	70.1 69.3		69.7 _{↑2.1} 70.3 _{↑2.7}	RAFT RAFT+	82.3 82.0	68.0 67.8	81.4 81.5	71.1 71.2	82.5 82.2	69.5 68.8	84.3 84.5	69.9 70.1		69.6 ↑11.0 69.5 _{↑10.9}	
REWARD N	MODEL: C	COMET-QE	-MQM								REWARD N	NODEL: C	Comet-qe	-MQM								
RAFT RAFT+	83.3 83.7	72.0 72.4	84.8 85.6	75.1 75.7	77.8 78.6	64.3 65.6	86.1 85.8	70.4 70.0		70.5 _{↑2.9} 70.9 _{↑3.3}	RAFT RAFT+	80.7 81.2	65.5 67.0	76.7 79.2	66.0 68.9	75.7 77.3	59.9 62.3	75.2 78.8	54.8 60.7		61.5 _{↑2.9} 64.8 _{↑6.2}	
				NL	lb-200-1	.3B									NI	LLB-200-	1.3B					
SFT	70.9	52.5	85.3	74.8	66.0	48.4	83.7	69.1	76.5	61.2	SFT	83.1	70.2	71.1	62.7	73.2	61.5	57.3	43.4	71.2	59.4	
REWARD N	MODEL: C	COMET-QE	-DA								REWARD N	MODEL: C	COMET-QE	-DA								
RAFT RAFT+	73.2 74.2	52.2 56.7	85.8 85.8	75.1 75.2	67.9 69.0	50.5 52.6	84.2 84.0	68.9 67.9		61.7 _{↑0.5} 63.1 _{↑1.9}	RAFT RAFT+	85.2 84.5	72.5 71.3	64.7 77.7	33.2 67.0	70.5 83.1	29.7 70.3	73.8 72.0	30.1 55.1		41.4 _{↓18.0} 65.9 _{↑6.6}	
REWARD N	MODEL: C	COMET-QE	-MQM								REWARD N	MODEL: C	Comet-qe	-MQM								
RAFT RAFT+	82.8 83.3	71.3 71.8	83.9 84.6	73.4 74.4	76.1 76.7	62.3 62.9	84.6 84.6	68.6 68.4		68.9 _{↑7.7} 69.4 _{↑8.2}	RAFT RAFT+	85.8 84.5	73.2 71.8	67.5 76.4	50.0 66.1	71.1 82.1	41.6 69.9	71.1 71.4	42.7 54.5	73.9 _{↑2.7} 78.6 _{↑7.4}	51.9 _{↓7.5} 65.6 _{↑6.2}	

(a) High-resource language pairs

(b) Low-resource language pairs

Human Preference Study

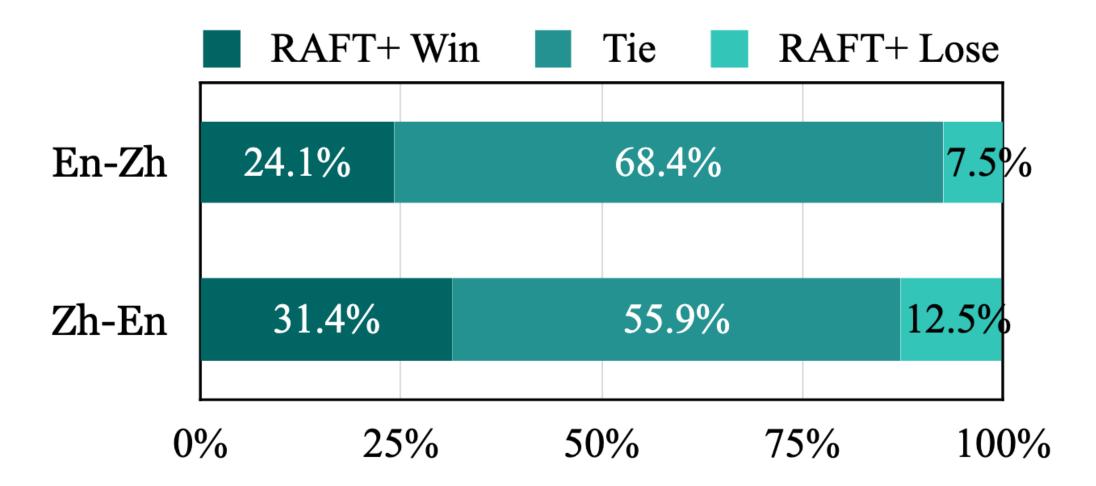
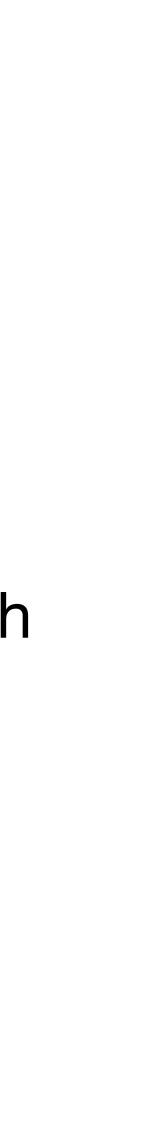


Figure 4: Human preference evaluation, comparing RAFT+ to SFT model on $En \Leftrightarrow Zh$ test sets.

Humans prefer models trained with feedback.



Data Efficiency of Feedback Training

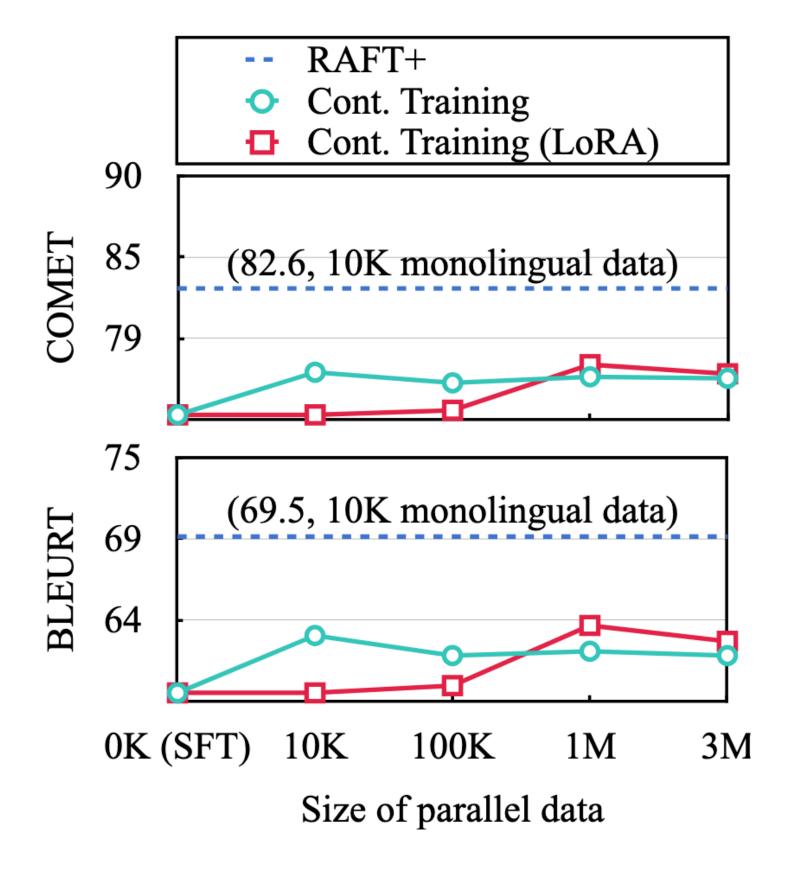


Figure 5: Comparison between RAFT+ and continuous training in the low-resource setting.

Feedback training is data efficient.

- Continuous training with increasing amounts of parallel data fails to yield consistent improvements.
- RAFT+ performs markedly better using merely 10K monolingual data。

Effects of Scaling Model Size and Pretraining

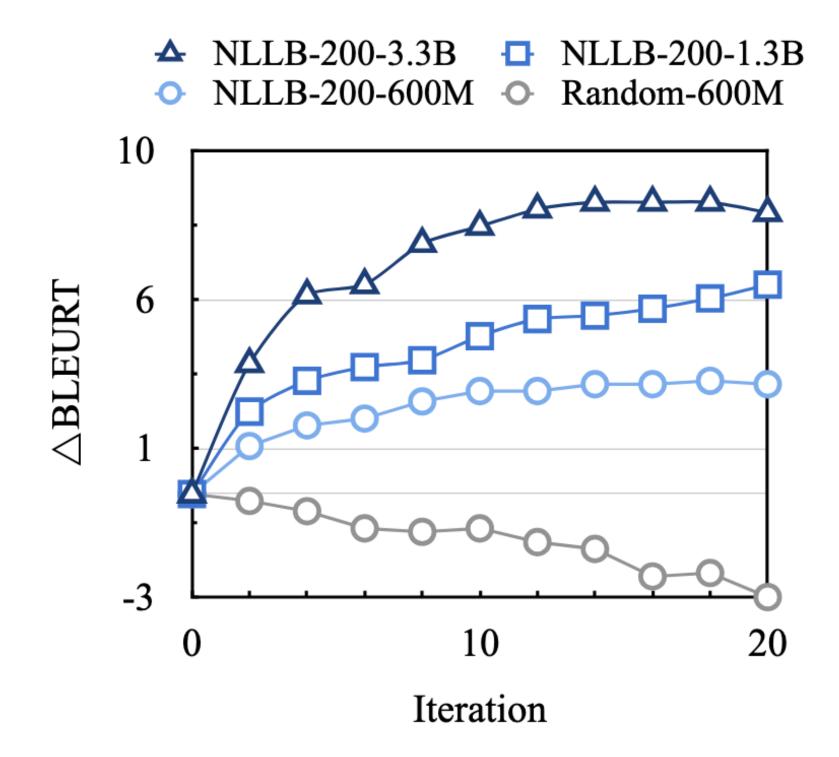


Figure 6: Training curves of RAFT+ (high-resource) COMET-QE-MQM) under different base models. We report the change in BLEURT score for each checkpoint relative to the SFT model.

Seedback training performs better on strong base models.

- Feedback training exhibits a more pronounced enhancement with a larger base model size.
- Feedback training is effective only when the base model has undergone pretraining.

Check our paper & code for more details

Paper

Code