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Low-rank update

Low-Rank Adaptation (LoRA)

• Parameter Update:

low-rank
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Low-rank constraint limits the expressive capacity of LoRA

Low-Rank Adaptation (LoRA)
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LoRA still lags behind full fine-tuning (FFT)

[1] Biderman, Dan, et al. "Lora learns less and forgets less." TMLR

Effective rank of FFT is large



LoRA can be further compressed

Low-Rank Adaptation (LoRA)
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• Many related works demonstrate that 
LoRA can be further compressed by 

• [2] 7.76% 

• [3] 12.5% 

• [4] 50% 

• [5] 3% 

• without performance loss. 

Compressing 100 LoRAs by sharing their subspaces won’t 
compromise performance.



LoRA is underutilized.
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Why LoRA is under-utilized?

Low-Rank Adaptation (LoRA)
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• Different components and layers require 
different levels of expressive capability. 

• LoRA adopts an average allocation strategy.



Partial rank-sharing across layers

Rank-Sharing Low-Rank Adaptation (RaSA)

• Split the matrices       and       into layer-specific parts                 and layer-shared parts 

• Concatenate all layer-shared parts across layers to form shared rank pools  

• Update of layer-i
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Comparison between LoRA and RaSA

Rank-Sharing Low-Rank Adaptation (RaSA)
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LoRA RaSA

• r => r-k+Lk 

• extra parameters (0.01‰) 



Minimum Reconstruction Error

Reconstruction Error Analysis
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• We compare their abilities to reconstruct a set of high-rank matrices                   ,   

• We prove                                    (Theorem 3.1) 



Empirical Analysis

Reconstruction Error Analysis
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RaSA requires ∼10 iterations to achieve a significantly lower 
reconstruction error than LoRA’s minimum.



Main Results
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RaSA learns more and faster than LoRA
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Training curves of LoRA and RaSA with different ranks.



RaSA forgets less than LoRA
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Y-axis shows the average of prediction accuracy on three benchmarks to evaluate model’s 
forgetting. Higher prediction accuracy denotes less forgetting.



Summary

• We propose RaSA, an extension of LoRA by by allowing partial rank sharing across layers, 
which significantly improves the efficiency and expressiveness. 

• We provide a comprehensive analysis – both theoretical and empirical – showcasing RaSA’s 
superior capacity for matrix reconstruction and its resultant improved performance on 
downstream tasks.
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Thank You
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