
Limitations of Current LLMs
Limitation: Degeneration-of-Thought (DoT)

• Once the LLM has established confidence in its answers, it is unable to generate 
novel thoughts later through self-reflection even if the initial stance is incorrect. 
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Encouraging Divergent Thinking in LLMs
MAD: Multi-Agent Debate

30



Algorithm

31



Experimental Setup
Task 1: Commonsense Machine Translation
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Experimental Results
Task 1: Commonsense Machine Translation
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Experimental Setup
Task 2: Counter-Intuitive Arithmetic Reasoning
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Experimental Results
Task 2: Counter-Intuitive Arithmetic Reasoning
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• Self-Reflect does not improve much 
over the baseline GPT-3.5-Turbo


•  MAD outperforms all the other 
compared methods




Mitigation of DoT
① Bias and Distorted Perception


• Bias: Ambiguity error rate (human evaluation)

② Rigidity and Resistance to Change


• Diversity: Self-BLEU score

③ Limited External Feedback.


• We introduce the views of other agents in the form of debates
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Iteration Distribution of Debate
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• Efficiency 


✓In the majority of cases, the 
optimal answer can be achieved 
through a single round of debate


• Effectiveness


✓When translating more complex 
sentences, the judge requires 
additional iterations to gather 
adequate information



Weak LLM as Judge

• The quality of the debaters’ responses significantly impact the performance 
ceiling of MAD. 


• The selection of the judge agent plays a secondary role.
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Case Study
Task 1: Commonsense Machine Translation
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Case Study
Task 2: Counter-Intuitive Arithmetic Reasoning
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Summary

LLM can improve translation quality by mimicking human translation 
strategies.


MT model can learn from human feedback (modeled by QE) after addressing 
overoptimization.


Multi-Agent Debate can address Degeneration-of-Thought (DoT) problem by 
exploring divergent thinking.
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