Improving Machine Translation with Human Strategy and Feedback Zhiwei He & Rui Wang Shanghai Jiao Tong University

The Neural Machine Translation Training Process

https://blog.research.google/2016/11/zero-shot-translation-with-googles.html?m=1 2

Training

The Neural Machine Translation Training Process

https://blog.research.google/2016/11/zero-shot-translation-with-googles.html?m=1 2

Training

Two Main Limitations of Current NMT Models Limitation 1: Lacking Human Translation Strategies

NMT models are trained to perform source-to-target mapping.

A human translator can take preparatory steps to ensure high-quality translation.

Large language model (LLM) can adopt many human-like strategies in reasoning and planning tasks

Let's think step by step, ...

Chain-of-Thought

Step-Back prompting

https://arxiv.org/abs/2201.11903 https://arxiv.org/abs/2303.11366 https://arxiv.org/abs/2310.06117

Let me do a reflection and think about how to improve my strategy, ...

Reflexion

Exploring Human-Like Translation Strategy with LLM Preparatory steps that a human translator might take

- ✓ Identify keywords and consider how to translate them
- ✓ Reflect on what the main topic of this text is
- ✓ Consider how similar sentences (demonstrations) are translated.

Exploring Human-Like Translation Strategy with LLM MAPS: Multi-Aspect Prompting and Selection

6

	Cotob !!
Ask for keyword pairs	
Extract the keywords in the	Use a few
following English sentence,	the topics
and then translate these	input sent
keywords into Chinese.	
	Input: <so< td=""></so<>
English: <source/>	
	Topics: <t< td=""></t<>
Keyword Pairs:	$<$ topic $>_3$, .
<pre><src_word>1=<tgt_word>1,</tgt_word></src_word></pre>	
<pre><src wora="">2=<tgt wora="">2,</tgt></src></pre>	
]
 Step 2: Kn	owledge Integrati
	owledge Integrati
<pre></pre>	owledge Integrati
Keyword Pairs: <src_word>1=<tg Topics: <topic>1, <topic>2, <t Related English-Chinese sente</t </topic></topic></tg </src_word>	owledge Integrati t_word>1, <src_ opic>3, ence pair: <sr< td=""></sr<></src_
Keyword Pairs: < <u>src_word>1=<tg< u=""> Topics: <<u>topic>1</u>, <<u>topic>2</u>, <<u>t</u> Related English-Chinese sente</tg<></u>	owledge Integrati t_word>1, <src_ opic>3, ence pair: <sr< td=""></sr<></src_
Keyword Pairs: <src_word>1=<tg Topics: <topic>1, <topic>2, <t Related English-Chinese sente Instruction: Given the above</t </topic></topic></tg </src_word>	owledge Integration t_word>1, <src_ opic>3, ence pair: <sr knowledge, tr</sr </src_
Keyword Pairs: <src_word>1=<tg Topics: <topic>1, <topic>2, <t Related English-Chinese sente Instruction: Given the above English text into Chinese.</t </topic></topic></tg </src_word>	owledge Integration t_word>1, <src_ opic>3, ence pair: <sr knowledge, tr</sr </src_
Keyword Pairs: <src_word>1=<tg Topics: <topic>1, <topic>2, <t Related English-Chinese sente Instruction: Given the above English text into Chinese.</t </topic></topic></tg </src_word>	owledge Integration t_word>1, <src_ opic>3, ence pair: <sr knowledge, tr</sr </src_
Keyword Pairs: <src_word>1=<tg Topics: <topic>1, <topic>2, <t Related English-Chinese sente Instruction: Given the above English text into Chinese. English: <source/></t </topic></topic></tg </src_word>	owledge Integrati t_word>1, <src_ opic>3, ence pair: <sr knowledge, tr</sr </src_

Implementation of Knowledge Selection (Reranking Method)

choose the best candidate on its own.

• **COMET-QE**: A trained QE scorer that assigns a numerical score to each candidate. Selection is based on the highest score.

the **upper bound** of selection.

• LLM-SCQ: Composing a single choice question (SCQ) that asks the LLM to

• **COMET** (oracle): A reference-based scorer that assigns a numerical score to each candidate. It can be considered as the oracle QE method, representing

Method	En-Zh	Zh-En	En-De	De-En	En-Ja	Ja-En	De-Fr	Fr-De	Cs-Uk	Uk-Cs	En-Hr		
			WM	T22 Bes	st CO	MET							
WMT22 Best	86.8	81.0	87.4	85.0	89.3	81.6	85.7	89.5	91.6	92.2	88.4		
		te	xt-dav	inci-00)3 CO	MET							
Baseline	86.2	81.6	85.8	85.2	87.9	81.8	82.8	86.3	88.0	89.2	85.9		
5-Shot (Hendy et al.)	87.0	81.1	86.5	85.2	88.2	<u>8.2 82.0 83.0 80.0</u>							
Rerank LLM-SCQ	86.4	81.7	86.0	85.2	88.0	82.0	83.0	86.4	88.3	89.4	86.3		
MAPS LLM-SCQ	86.8	82.0	86.4	85.4	88.5	82.4	83.4	86.9	88.8	89.9	86.5		
Rerank COMET-QE	86.9	82.1	86.4	85.5	88.8	82.3	83.4	86.8	89.4	90.1	87.1		
MAPS COMET-QE	87.6	82.6	87.2	85.7	89.5	82.9	84.1	87.5	90.1	91.1	88.1		
Rerank COMET	87.5	82.6	86.9	85.8	89.3	82.3	83.4	86.8	89.9	90.7	87.7		
↑ MAPS COMET	88.5	83.8	88.0	86.7	90.3	82.9	84.1	87.5	90.9	92.0	89.0		
text-davinci-003 BLEURT													
Baseline	71.1	69.6	75.6	74.0	66.3	67.8	70.4	77.6	75.0	78.8	75.0		
5-Shot (Hendy et al.)	72.2	69.2	76.3	74.5	67.1	68.0	70.9	78.0					
Rerank LLM-SCQ	71.4	69.8	75.9	74.1	66.6	68.1	70.6	77.7	75.3	79.0	75.4		
MAPS LLM-SCQ	72.1	70.5	76.3	74.4	67.4 68.8		71.4	78.6	76.1	80.2	76.0		
Rerank COMET-QE	71.7	70.1	76.1	74.3	67.3	68.3	71.2	78.1	76.4	79.7	75.9		
MAPS COMET-QE	72.6	70.8	77.1	74.6	68.3	69.1	71.9	78.9	77.4	81.2	77.1		
Rerank COMET	72.4	70.6	76.5	74.6	68.0	68.8	8 71.8 7		76.8	80.2	76.4		
↑ MAPS _{Сомет}	74.0	72.1	77.8	75.7	69.4	70.9	73.6	80.2	78.3	82.1	77.9		
				Alpac	a CC	MET							
Baseline	58.9	73.1	75.5	81.9	56.6	71.8	71.7	75.4	74.1	71.1	65.9		
Rerank COMET-QE	66.2	74.9	78.5	82.6	64.7	73.7	74.5	78.2	78.1	76.3	70.5		
MAPS COMET-QE	69.0	76.0	79.7	83.3	66.9	74.7	75.9	79.1	80.8	78.5	72.3		
				Alpac	a BI	EURT							
Baseline	42.3	58.0	62.2	69.8	31.4	55.4	52.2	63.4	52.4	54.3	53.2		
Rerank COMET-QE	47.5	59.5	64.7	70.4	36.2	56.7	55.0	66.0	55.2	59.0	56.0		
MAPS COMET-QE	50.6	60.6	66.3	71.1	38.2	57.7	56.6	66.8	59.5	61.2	57.2		
				Vicur	na CO	MET							
Baseline	81.3	78.4	79.8	82.9	82.3	77.3	75.5	77.1	74.9	72.7	69.3		
Rerank COMET-QE	83.6	79.3	81.8	83.6	85.2	78.8	77.8	79.6	79.9	77.7	74.2		
MAPS COMET-QE	84.5	80.2	82.7	84.1	86.5	79.7	79.2	81.1	81.8	80.1	76.0		
				Vicur	na BI	EURT							
Baseline	64.9	65.3	67.4	71.0	58.7	62.8	58.8	66.0	57.8	56.6	57.7		
Rerank COMET-QE	66.7	66.0	69.2	71.8	61.6	64.0	61.2	68.2	61.8	61.2	60.5		
MAPS COMET-QE	67.8	66.9	70.0	72.4	63.0	64.8	62.5	69.3	64.0	64.3	63.4		

 The effectiveness of MAPS has been validated across a wide range of settings.

✓ Across **11** language pairs, **3** LLMs, and 2 metrics, MAPS consistently boost translation.

✓ Equipped with MAPS, textdavinci-003 surpasses the best submissions in WMT22 in 5 out of the 11 translation directions.

Method	En-Zh	Zh-En	En-De	De-En	En-Ja	Ja-En	De-Fr	Fr-De	Cs-Uk	Uk-Cs	En-Hr		
			WM	T22 Bes	st C0	OMET							
WMT22 Best	86.8	81.0	87.4	85.0	89.3	81.6	85.7	89.5	91.6	92.2	88.4		
		te	xt-dav	inci-00	03 CO	OMET							
Baseline	86.2	81.6	85.8	85.2	87.9	81.8	82.8	86.3	88.0	89.2	85.9		
5-Shot (Hendy et al.)	87.0	81.1	86.5	85.2	88.2	82.0	83.6	86.6					
Rerank LLM-SCQ	86.4	81.7	86.0	85.2	88.0	82.0	83.0	86.4	88.3	89.4	86.3		
MAPS LLM-SCQ	86.8	82.0	86.4	85.4	88.5	82.4	83.4	86.9	88.8	89.9	86.5		
Rerank COMET-QE	86.9	82.1	86.4	85.5	88.8	82.3	83.4	86.8	89.4	90.1	87.1		
MAPS COMET-QE	87.6	82.6	87.2	85.7	89.5	82.9	84.1	87.5	90.1	91.1	88.1		
Rerank COMET	87.5	82.6	86.9	85.8	89.3	82.3	83.4	86.8	89.9	90.7	87.7		
↑ MAPS _{Сомет}	88.5	83.8	88.0	86.7	90.3	82.9	84.1	87.5	90.9	92.0	89.0		
text-davinci-003 BLEURT													
Baseline	71.1	69.6	75.6	74.0	66.3	67.8	70.4	77.6	75.0	78.8	75.0		
5-Shot (Hendy et al.)	12.2	69.2	/6.3	74.5	67.1	68.0	70.9	/8.0					
Rerank LLM-SCQ	71.4	69.8	75.9	74.1	66.6	68.1	70.6	77.7	75.3	79.0	75.4		
MAPS LLM-SCQ	72.1	70.5	76.3	74.4	74.4 67.4 68.8		71.4	78.6	76.1	80.2	76.0		
Rerank COMET-QE	71.7	70.1	76.1	74.3	67.3	68.3	71.2	78.1	76.4	79.7	75.9		
MAPS COMET-QE	72.6	70.8	77.1	74.6	68.3	69.1	71.9	78.9	77.4	81.2	77.1		
↑ Rerank COMET	72.4	70.6	76.5	74.6	68.0	68.8	71.8	78.6	76.8	80.2	76.4		
↑ MAPS COMET	74.0	72.1	77.8	75.7	69.4	70.9	73.6	80.2	78.3	82.1	77 .9		
	50.0	50.1		Alpac	a CO	OMET				61 1	65.0		
Baseline	58.9	73.1	75.5	81.9	56.6	71.8	71.7	75.4	74.1	71.1	65.9		
Rerank COMET-QE	66.2	74.9	78.5	82.6	64.7	73.7	74.5	78.2	78.1	76.3	70.5		
MAPS COMET-QE	69.0	76.0	79.7	83.3	66.9	74.7	75.9	79.1	80.8	78.5	72.3		
Des Pas	40.0	50.0	(2.2	Alpac	a B]	LEURT	52.0	(2.4	50.4	54.0	52.2		
Baseline	42.3	58.0	62.2	69.8	31.4	55.4	52.2	63.4	52.4	54.3	53.2		
Rerank COMET-QE	47.5	59.5	64.7	70.4	36.2	56.7	55.0	66.0	55.2	59.0	56.0		
MAPS COMET-QE	50.0	00.0	00.3	71.1	38.2	57.7	50.0	60.8	59.5	01.2	57.2		
Pagalina	01.2	70 /	70.8	Vicur 82.0	$a \mid C($	OMET	75.5	77 1	74.0	70 7	60.2		
baseline	81.5	/8.4	/9.8	82.9	82.3	11.5	15.5	//.1	/4.9	12.1	09.3		
Rerank COMET-QE	83.6	79.3	81.8	83.6	85.2	78.8	77.8	79.6	79.9	77.7	74.2		
MAPS COMET-QE	84.5	80.2	82.7	84.1	80.5	79.7	79.2	ð1 . 1	81.8	80.1	70.0		
Dagalina	64.0	65.2	67 A	Vicur	na Bl	LEURT	50.0	66.0	57.0	56.6	57 7		
Daseiine	04.9	03.3	07.4	/1.0	38.7	02.8	58.8	0.00	57.8	30.0	57.7		
Rerank COMET-QE	66.7	66.0	69.2	71.8	61.6	64.0	61.2	68.2	61.8	61.2	60.5		
MAPS COMET-QE	67.8	66.9	70.0	72.4	63.0	64.8	62.5	69.3	64.0	64.3	63.4		

 The effectiveness of MAPS has been validated across a wide range of settings.

✓ Across **11** language pairs, **3** LLMs, and 2 metrics, MAPS consistently boost translation.

✓ Equipped with MAPS, textdavinci-003 surpasses the best submissions in WMT22 in 5 out of the 11 translation directions.

Method	En-Zh	Zh-En	En-De	De-En	En-Ja	Ja-En	De-Fr	Fr-De	Cs-Uk	Uk-Cs	En-Hr		
			WM	T22 Bes	st C0	MET							
WMT22 Best	86.8	81.0	87.4	85.0	89.3	81.6	85.7	89.5	91.6	92.2	88.4		
		te	xt-dav	inci-00)3 CC	MET							
Baseline	86.2	81.6	85.8	85.2	87.9	81.8	82.8	86.3	88.0	89.2	85.9		
5-Shot (Hendy et al.)	87.0	81.1	86.5	85.2	88.2	82.0	83.0 80.0						
Rerank LLM-SCQ	86.4	81.7	86.0	85.2	88.0	82.0	83.0	86.4	88.3	89.4	86.3		
MAPS LLM-SCQ	86.8	82.0	86.4	85.4	88.5	82.4	83.4	86.9	88.8	89.9	86.5		
Rerank COMET-QE	86.9	82.1	86.4	85.5	88.8	82.3	83.4	86.8	89.4	90.1	87.1		
MAPS COMET-QE	87.6	82.6	87.2	85.7	89.5	82.9	84.1	87.5	90.1	91.1	88.1		
Rerank COMET	87.5	82.6	86.9	85.8	89.3	82.3	83.4	86.8	89.9	90.7	87.7		
↑ MAPS _{Сомет}	88.5	83.8	88.0	86.7	90.3	82.9	84.1	87.5	90.9	92.0	89.0		
text-davinci-003 BLEURT													
Baseline	71.1	69.6	75.6	74.0	66.3	67.8	70.4	77.6	75.0	78.8	75.0		
5-Shot (Hendy et al.)	72.2	69.2	76.3	74.5	67.1	68.0	70.9	78.0					
Rerank LLM-SCQ	71.4	69.8	75.9	74.1	66.6	68.1	70.6	77.7	75.3	79.0	75.4		
MAPS LLM-SCQ	72.1	70.5	76.3	74.4	67.4	68.8	68.8 71.4		76.1	80.2	76.0		
Rerank COMET-QE	71.7	70.1	76.1	74.3	67.3 68.3		71.2	78.1	76.4	79.7	75.9		
MAPS COMET-QE	72.6	70.8	77.1	74.6	68.3	69.1	71.9	78.9	77.4	81.2	77.1		
Rerank COMET	72.4	70.6	76.5	74.6	68.0	68.8	71.8	78.6	76.8	80.2	76.4		
↑ MAPS _{Comet}	74.0	72.1	77.8	75.7	69.4	70.9	73.6	80.2	78.3	82.1	77.9		
				Alpac	a CC	MET							
Baseline	58.9	73.1	75.5	81.9	56.6	71.8	71.7	75.4	74.1	71.1	65.9		
Rerank COMET-QE	66.2	74.9	78.5	82.6	64.7	73.7	74.5	78.2	78.1	76.3	70.5		
MAPS COMET-QE	69.0	76.0	79.7	83.3	66.9 74.7		75.9	79.1	80.8	78.5	72.3		
				Alpac	a BI	EURT							
Baseline	42.3	58.0	62.2	69.8	31.4	55.4	52.2	63.4	52.4	54.3	53.2		
Rerank COMET-QE	47.5	59.5	64.7	70.4	36.2	56.7	55.0	66.0	55.2	59.0	56.0		
MAPS COMET-QE	50.6	60.6	66.3	71.1	38.2	57.7	56.6	66.8	59.5	61.2	57.2		
				Vicur	na CO	MET							
Baseline	81.3	78.4	79.8	82.9	82.3	77.3	75.5	77.1	74.9	72.7	69.3		
Rerank COMET-QE	83.6	79.3	81.8	83.6	85.2	78.8	77.8	79.6	79.9	77.7	74.2		
MAPS COMET-QE	84.5	80.2	82.7	84.1	86.5	79.7	79.2	81.1	81.8	80.1	76.0		
				Vicur	na BI	EURT							
Baseline	64.9	65.3	67.4	71.0	58.7	62.8	58.8	66.0	57.8	56.6	57.7		
Rerank COMET-QE	66.7	66.0	69.2	71.8	61.6	64.0	61.2	68.2	61.8	61.2	60.5		
MAPS COMET-QE	67.8	66.9	70.0	72.4	63.0	64.8	62.5	69.3	64.0	64.3	63.4		

- Using the same knowledge selection method, MAPS outperforms Rerank consistently.
- This indicates that the improvements brought by MAPS stem from three types of translation-related knowledge:

✓ keywords

 \checkmark topics

 \checkmark relevant demonstrations.

Method	En-Zh	Zh-En	En-De	De-En	En-Ja	Ja-En	De-Fr	Fr-De	Cs-Uk	Uk-Cs	En-Hr		
			WM	T22 Bes	st CC	MET							
WMT22 Best	86.8	81.0	87.4	85.0	89.3	81.6	85.7	89.5	91.6	92.2	88.4		
		te	xt-dav	inci-00)3 CC	MET							
Baseline	86.2	81.6	85.8	85.2	87.9	81.8	82.8	86.3	88.0	89.2	85.9		
5-Shot (Hendy et al.)	87.0	81.1	86.5	85.2	88.2	82.0	83.6	86.6					
Rerank LLM-SCQ	86.4	81.7	86.0	85.2	88.0	82.0	83.0	86.4	88.3	89.4	86.3		
MAPS LLM-SCQ	86.8	82.0	86.4	85.4	88.5	82.4	83.4	86.9	88.8	89.9	86.5		
Rerank COMET-QE	86.9	82.1	86.4	85.5	88.8	82.3	83.4	86.8	89.4	90.1	87.1		
MAPS COMET-QE	87.6	82.6	87.2	85.7	89.5	82.9	84.1	87.5	90.1	91.1	88.1		
Rerank COMET	87.5	82.6	86.9	85.8	89.3	82.3	83.4	86.8	89.9	90.7	87.7		
↑ MAPS COMET	88.5	83.8	88.0	86.7	90.3	82.9	84.1	87.5	90.9	92.0	89.0		
text-davinci-003 BLEURT													
Baseline	71.1	69.6	75.6 76.2	74.0	66.3	67.8	70.4	77.6	75.0	78.8	75.0		
5-Shot (Hendy et al.)	72.2	09.2	70.5	74.5	07.1	08.0	70.9	/8.0					
Rerank LLM-SCQ	71.4	69.8	75.9	74.1	66.6	68.1	70.6	77.7 79.6	75.3	79.0	75.4		
MAPS LLM-SCQ	/2.1	70.5	/6.3	/4.4	07.4	6.60	/1.4	78.0	70.1	80.2	76.0		
Rerank COMET-QE	71.7	70.1	76.1	74.3	67.3	.3 68.3 13 69 1		78.1	76.4	79.7	75.9		
MAPS COMET-QE	72.0	70.8	//.1	/4.0	08.3	09.1	/1.9	78.9	77.4	81.2	77.1		
↑ Rerank COMET	72.4	70.6	76.5	74.6	68.0	68.8	71.8	78.6	76.8	80.2	76.4		
T MAPS COMET	/4.0	/2.1	//.ð	/5./	09.4	70.9	/3.0	80.2	/8.3	82.1	11.9		
Dogolino	59.0	72 1	75.5	Alpac	a CC	71 0	717	75 4	74 1	71.1	65.0		
Dasenne	38.9	75.1	75.5	81.9	50.0	/1.8	/1./	75.4	74.1	/1.1	03.9		
Rerank COMET-QE	66.2	74.9 76.0	78.5 70.7	82.6	64.7	73.7	74.5 75 0	78.2 70.1	78.1	76.3 78 5	70.5		
MAPS COMET-QE	09.0	/0.0	19.1	03.5	00.9	/4./	75.9	/9.1	00.0	70.5	12.5		
Pacalina	42.2	58.0	62.2	Alpac	214	SEURT	52.2	62 /	52.4	54.2	52.2		
Dasenne	42.5	38.0	62.2	09.8	51.4	55.4	32.2	05.4	52.4	54.5	55.2		
Rerank COMET-QE	47.5 50.6	59.5	64.7	70.4 71.1	36.2	56.7 57 7	55.0 56.6	66.0	55.2 59.5	59.0	56.0 57.2		
MAPS COMET-QE	50.0	00.0	00.5	/1.1	30.2	57.7	50.0	00.0	59.5	01.2	51.2		
Receline	813	78 /	70.8	Vicur 82.0	1a CC	77 3	75 5	77 1	74.0	72 7	60.3		
Dasenne	01.5	70.4	79.0	02.9	02.5	77.5	75.5	77.1	74.9	72.7	09.5		
Kerank COMET-QE	83.6 84 5	79.3 80.2	81.8 82 7	83.6 84 1	85.2 86 E	78.8 70 7	77.8 70 2	79.6 81 1	79.9 81 8	77.7 80 1	74.2 76.0		
WIALS COMET-QE	04.3	00.2	04.1	04.1	00.5	13.1	19.4	01,1	01.0	00.1	/0.0		
Baseline	64.9	65.3	67.4	71.0	na BI 587	EURT 62.8	58.8	66.0	57.8	56.6	57 7		
Dascille	04.7	05.5	(0.2	71.0	50.7	02.0		(0.0	57.0	50.0	51.1		
Kerank COMET-QE	66.7	66.0	69.2 70.0	71.8 72.4	61.6	64.0	61.2	68.2	61.8	61.2	60.5		
WIALS COMET-QE	07.0	00.9	/0.0	/2.4	03.0	04.0	02.5	09.5	04.0	04.3	03.4		

- MAPS exhibits a higher upper bound for selection.
 - COMET: MAPS > Rerank

Human Evaluation **Preference study**

MAPS is generally more preferred by humans.

Human Evaluation **Multidimensional quality metrics (MQM)**

Method	En-Zh	Zh-En
Base	1.94	2.96
Rerank	1.79	2.84
MAPS	1.59	2.60

Table 2: Averaged MQM Score (\downarrow).

MAPS reduces mistranslation, awkward style, untranslated text, and omission errors.

Hallucination and Ambiguity

MAPS reduces LLM's hallucinations **MAPS** helps ambiguity resolution

Method	COMET	BLEURT	Accuracy
Rerank	81.5	70.2	61.5
MAPS	82.2	70.6	65.5

Accuracy of ambiguity resolution

Using single type of knowledge does not result in consistent improvement

Method	En-Zh	Zh-En	En-De	De-En	En-Ja	Ja-En	De-Fr	Fr-De							
	text-davinci-003 COMET														
Baseline	86.2	81.6	85.8	85.2	87.9	81.8	82.8	86.3							
+Keyword	86.2	81.5	85.5	84.9	88.0	81.5	82.6	86.2							
+Topic	86.4	81.7	85.6	85.2	88.1	81.9	83.1	86.3							
+Demo	86.9	81.8	86.6	85.2	88.5	81.8	83.4	86.7							

Self-generated knowledge from LLM can be noisy.

Please refer to the paper for further discussion.

- **I**Using multiple knowledge and knowledge selection are important.

Two Main Limitations of Current NMT Models Limitation 2: Lacking Human Feedback

Trained on vast amounts of crawled data, models do not understanding what makes a good translation.

Incapable of improving translations based on human feedback.

LLMs have already benefited from learning from human feedback

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Can MT models learn from human feedback? Modeling human preference in MT: Quality Estimation (QE)

A sentence-level QE model can provide a numerical score to indicate the quality of the translation.

Reference-free

Can MT models learn from human feedback? Modeling human preference in MT: Quality Estimation (QE)

Metric	avg rank
METRICX XXL	1.20
Comet-22	1.32
UniTE	1.86
BLEURT-20	1.91
Comet-20	2.36
MATESE	2.57
CometKiwi*	2.70
MS-COMET-22	2.84
UNITE-SRC*	3.03
YISI-1	3.27
COMET-QE*	3.33
MATESE-QE*	3.85
MEE4	3.87
BertScore	3.88
MS-COMET-QE-22*	4.06
CHRF	4.70
f101spBleu	4.97
HWTSC-TEACHER-SIM*	5.17
BLEU	5.31
REUSE*	6.69

Table 1: Official ranking of all primary submissions of the WMT22 Metric Task. The final score is the weighted average ranking over 201 different scenarios. Metrics with * are reference-free metrics.

Today's most advanced QE models closely match human preferences.

Can we function them as reward models in feedback training?

Feedback Training in MT **Reward rAnked FineTuning (RAFT)**

- MT model: $M = P(y|x;\theta)$
- QE-based reward model: r(x, y)
- Objective

$$\max_{\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim P(y|x;\theta)} r(x, y)$$

Algorithm 1 RAFT

- **Require:** Training set \mathcal{X} , reward function r(x, y), initial model $M_0 = P(y|x; \theta_0)$, batch size b, temperature T, the number of candidate k
 - 1: for iteration i in 0, 1, ..., N 1 do
 - $D_i \leftarrow \text{SampleBatch}(\mathcal{X}, b)$ 2:

3:
$$\mathcal{B} = \emptyset$$

for $x \in D_i$ do 4:

5:
$$y_1, \ldots, y_k \sim P_T(y|x;\theta_i)$$

6: $y^* = \arg \max_{y_j \in \{y_1, \dots, y_k\}} r(x, y_j)$ 7: $\mathcal{B} = \mathcal{B} \cup \{(x, y^*)\}$

7:
$$\mathcal{B} = \mathcal{B} \cup \{(x, y^*)\}$$

Fine-tune θ_i on \mathcal{B} to obtain $M_{i+1} =$ 8: $P(y|x;\theta_{i+1}).$

Results Not as Expected

 $\mathbf{\nabla}$

As training progresses, reward goes up, but translation quality goes down.

The two show a negative linear correlation

Why? Overoptimization! QE (reward) model is not perfect

Error type	Translation	Reward
None	The rule of drinking Red	2.84
	Label Whisky:	
Len-ratio (too long/short translation)	The rule of drinking Red Label Whisky: 1. Al- ways drink responsibly. 2. Never drink alone. 3. Avoid drinking on an empty stomach. 4. Set lim- its and stick to them. 5. Drink in moderation.	5.60
Off-target (wrong target language)	So trinkt man Red-Label- Whisky:	4.58

Table 1: A case of Chinese \Rightarrow English translation where the QE model (COMET-QE-DA) assigns higher scores to length-ratio and off-target errors than an error-free translation. Error spans are highlighted. QE model may assign high scores to erroneous translations in some cases.

- The two most common errors
 - Len-ratio error
 - Off-target error

Why? Overoptimization! Models can quickly capture and learn from these error patterns

Overoptimizing against an imperfect reward model can lead to systems that receive good feedback from the reward model, but not humans.

How to mitigate overoptimization? Add penalty term in reward

- \blacktriangleright C(x, y) = True if (x, y) is a len-ratio or off-target error.
- We refer to this method as RAFT+.

$r^{+}(x,y) = \begin{cases} r(x,y) - P & \text{if } C(x,y) \\ r(x,y) & \text{otherwise} \end{cases}$

RAFT+ versus RAFT RAFT+ significantly mitigates overoptimization

Figure 3: Training curves under various settings. The metrics are average values for all language pairs on the development set. The QE-based reward model is COMET-QE-DA.

After addressing overoptimization Feedback training is very effective, especially in low-resource languages

Method	De	⇒En	En	⇒De	Zh	⇒En	En=	⇒Zh	Ave	rage	Method	thod En⇒Uk		Uk	Uk⇒En		⇒Cs	Cs⇒Uk		Ave	erage
Wiethou	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	Wethod	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT	COMET	BLEURT
				L	LAMA-2-	7B									L	LAMA-2-	-7B				
SFT	82.5	70.5	80.7	68.2	76.1	62.3	84.9	69.3	81.0	67.6	SFT	79.2	64.0	76.7	66.0	70.0	53.2	71.2	51.3	74.3	58.6
REWARD	MODEL: C	Comet-qe	-DA								REWARD N	MODEL: C	Comet-qe	-DA							
RAFT	83.7	72.1	82.8	71.1	78.7	65.3	85.9	70.1	82.8 _{↑1.7}	69 .7 _{↑2.1}	RAFT	82.3	68.0	81.4	71.1	82.5	69.5	84.3	69.9	82.6 _{18.3}	69.6 ^{11.0}
RAFT+	83.6	72.1	84.4	73.9	79.0	66.1	85.4	69.3	83.1 ^{2.1}	70.3 ^{↑2.7}	RAFT+	82.0	67.8	81.5	71.2	82.2	68.8	84.5	70.1	82.6 ↑8.3	69.5 _{↑10.9}
REWARD	MODEL: C	Comet-qe	-MQM								REWARD N	MODEL: C	Comet-qe	-MQM							
RAFT	83.3	72.0	84.8	75.1	77.8	64.3	86.1	70.4	83.0 _{↑2.0}	$70.5_{\uparrow 2.9}$	RAFT	80.7	65.5	76.7	66.0	75.7	59.9	75.2	54.8	77.1 _{12.8}	61.5 _{↑2.9}
RAFT+	83.7	72.4	85.6	75.7	78.6	65.6	85.8	70.0	83.4 _{12.4}	70.9 ^{↑3.3}	RAFT+	81.2	67.0	79.2	68.9	77.3	62.3	78.8	60.7	79.1 _{↑4.8}	64.8 ↑6.2
				NL	LB-200-1	.3B									NI	LB-200-	1.3B				
SFT	70.9	52.5	85.3	74.8	66.0	48.4	83.7	69.1	76.5	61.2	SFT	83.1	70.2	71.1	62.7	73.2	61.5	57.3	43.4	71.2	59.4
REWARD	MODEL: C	Comet-qe	-DA								REWARD N	MODEL: C	Comet-qe	-DA							
RAFT	73.2	52.2	85.8	75.1	67.9	50.5	84.2	68.9	77.8 _{↑1.3}	61.7 _{↑0.5}	RAFT	85.2	72.5	64.7	33.2	70.5	29.7	73.8	30.1	73.6 _{↑2.4}	41.4 _{↓18.0}
RAFT+	74.2	56.7	85.8	75.2	69.0	52.6	84.0	67.9	78.2 _{↑1.7}	63.1 _{1.9}	RAFT+	84.5	71.3	77.7	67.0	83.1	70.3	72.0	55.1	79.3 ↑8.1	65.9 _{↑6.6}
REWARD	MODEL: C	Comet-qe	-MQM								REWARD N	MODEL: C	Comet-qe	-MQM							
RAFT	82.8	71.3	83.9	73.4	76.1	62.3	84.6	68.6	81.8 _{↑5.3}	68.9 _{↑7.7}	RAFT	85.8	73.2	67.5	50.0	71.1	41.6	71.1	42.7	$73.9_{\uparrow 2.7}$	51.9 _{17.5}
RAFT+	83.3	71.8	84.6	74.4	76.7	62.9	84.6	68.4	82.3 ^{↑5.8}	69.4 _{↑8.2}	RAFT+	84.5	71.8	76.4	66.1	82.1	69.9	71.4	54.5	78.6 ↑7.4	65.6 ↑6.2

(a) High-resource language pairs

(b) Low-resource language pairs

Human Preference Study

Figure 4: Human preference evaluation, comparing RAFT+ to SFT model on $En \Leftrightarrow Zh$ test sets.

Humans prefer models trained with feedback.

Data Efficiency of Feedback Training

Figure 5: Comparison between RAFT+ and continuous training in the low-resource setting.

Feedback training is data efficient.

- Continuous training with increasing amounts of parallel data fails to yield consistent improvements.
- RAFT+ performs markedly better using merely 10K monolingual data。

Effects of Scaling Model Size and Pretraining

Figure 6: Training curves of RAFT+ (high-resource) COMET-QE-MQM) under different base models. We report the change in BLEURT score for each checkpoint relative to the SFT model.

Seedback training performs better on strong base models.

- Feedback training exhibits a more pronounced enhancement with a larger base model size.
- Feedback training is effective only when the base model has undergone pretraining.

ILLM can improve translation quality by mimicking human translation strategies.

overoptimization.

MT model can learn from human feedback (modeled by QE) after addressing